Unmanned Surface Vehicles – USVs go from Concept to Service

Over the next decade the maritime sector is likely to see one of the largest changes since sail gave way to steam.

Unmanned Surface Vehicles (USV) are now being considered for various marine roles and the drivers for rapid development are significant. The maritime sector now has the opportunity to shape technology developments from both legislative and end-user standpoints.

Unmanned or autonomous vessels have passed through the trial and evaluation stage and are now being adopted for civilian and military applications. As the maritime sector is often the last to adopt new technology it is important to identify genuine innovations from other transport sectors. The driverless car is being pioneered by some of the largest companies in the world including Google, and small unmanned aircraft are being considered as a delivery method for global retailers including Amazon. As these innovations pass through rigorous regulatory approval processes there will be wider acceptance from the public when they are adopted.

The military has already learned a lot about Unmanned Aerial Vehicles (UAV) and the systems required to operate them. During the war in Afghanistan the US went from a UAV inventory of 100 to 10,000 over a ten year period. There are several terms in use for unmanned aerial vehicles, including Unmanned Aircraft System (UAS) which has generally been adopted by defence and civil aviation authorities. UAS emphasizes the importance of other elements beyond an aircraft itself including ground control stations, data links and other support equipment.

The maritime sector has the opportunity to gain extensive knowledge from numerous civil aviation uses including aerial surveying of land and crops, search and rescue operations, inspecting power lines and pipelines, monitoring wildlife and delivering medical supplies to remote or otherwise inaccessible regions. Utilising fixed wing or rotor aircraft, the technology is usually referred to by aviation professionals as an Unmanned Aerial System (UAS) in preference to the military term ‘drone’.

Beneath the surface Autonomous Underwater Vehicles (AUV) operate independently of direct human input. Remotely operated underwater vehicles (ROVs) are controlled by a remote human operator and tethered by an armoured umbilical cable that carries electric power, video and data. ROV technology was developed in the 1960’s to perform deep sea rescue operations and recover objects from the ocean floor. The offshore oil & gas industry created work-class ROVs to assist in the development of offshore oil fields.

Small Unmanned Surface Vehicles Lead The Way

On the surface the COLREGS (International Regulations for Preventing Collisions at Sea) are a major and ongoing issue as mariners and legislators debate whether unmanned vessels can operate safely in the vicinity of manned vessels. While confidence is building in the wider shipping community a USV platform is required that will do minimum damage to another vessel if a collision should occur. Small, light vessels often with inflatable or foam collars, have tended to be used to prove the unmanned concept. Creating defined sea and waterway areas where unmanned vessels can operate will enable further evaluation of their capabilities.

The first adopted vessels are mainly in the sub 12 metre (40 feet) range. The vessel technology is mature in this size range with numerous hull forms to choose from. The sensor technology is also mature and aviation has proved that it can be fitted into relatively small platforms then deployed over long distances.

These small, lightweight vessels are flexible enough to fulfil a number of roles, plus their size and weight characteristics enable them to be easily transported by road, rail and air. Lightweight advanced materials, including composites, for hull and superstructure are likely to become the norm as this enables the onboard technology or fuel payload to be greater.




Copyright Rib & HSC

Leave a Reply

%d bloggers like this: